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ABSTRACT 

In this paper, we study a model of compartmental epidemic in which the immunity for the recovery class is zero 

and they move back into the susceptible class. We observed that there are two equilibria points and both equilibria points 

are under control. 
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1. INTRODUCTION 

There are many studies on HIV/AIDS which includes Diekmann et al (2009), Ayeni et al (2010), Oluyo (2013). 

All these researchers studied different ways of controlling the spread of this epidemic disease. Of a particular interest is 

Diekmann (2009), who constructed next matrices for compartmental epidemic models on which our own work is based. 

We revisited his work and considered a case when the recovery class does not have immunity and they were not removed 

from the system. We observed that the two equilibria points are stable unconditionally and the per capital birth and death 

rate (μ) has effect on the population but no effect on the stability of the equilibrium point. 

2. THE MODEL 

We modified Diekmann O et al (2009) model by considering a case when the recovery class does not have 

immunity and they were not removed from the system.  

Arising from the above, the relevant mathematical equations are: 
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Where S susceptible, E1 latently infected category 1, E2 latently infected category 2, I infectious, R recovery/ not 

removed /no immune, β transmission rate, μ the per capital birth and death rate, p ratio of E1 in the population, (1-p) ratio 

of E2 in the population, v1 rate of leaving E1, v2 rate of leaving E2,  rate of leaving the infectious state, N=S+E1+E2+I+R 
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3. THE CRITICAL POINTS 

There exits the following two equilibria correspond to the system (1) 

 E0 (185,0,0,0,0) 

 E1 (-2143.141172, 208.8163656, 0,-0.2105743539,-110.4971052) 

Stability Criteria 

Theorem 1: The equilibria E0 and E1 are asymptotically stable unconditionally. 

Proof: The general variation matrix M corresponding to system (1.1) is 
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 At equilibrium point E0 (185,0,0,0,0) the variation matrix Mo is given by  
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And the corresponding eigenvalues to the matrix above are 1=-0.1, 2=-0.11, 3=-0.076799353,                         

4=-0.1266010032+0.018007705521I, 5=-0.1266010032-0.018007705521I, which shows that the disease free equilibrium 

point is asymptotically stable. 

At equilibrium point E1 (-2143.141172, 208.8163656, 0,-0.2105743539,-110.4971052) the variation matrix M1 is 

given by 

 M1=
1

2

2 1 2

0.2105743539 0 0 2143.141172

0.2105743539 (v ) 0 2143.141172

0 0 (v ) 0 (1 p)

0 0 ( ) (v v )

0 0 0

N N

p p
p

N N

v

 
 

 
 

 

 

 

 
 

 
    
 
 

   
   
 

 

 

And the corresponding eigenvalues to the matrix above is 1=-0.099965280, 2=-0.08763932023,   3=-0.11,  

4=-0.11, 5=-0.1323606798, which shows that the endemic equilibrium point is asymptotically stable. 

Simulations: The system (1.1) is solved numerically. Since infection takes into account the births and death of human.  

In the numerical solution the initial value used are S(0)=100, E1(0)=30,E2(0)=40, I(t)=10, R(t)=5 and the 
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following data were used β=0.03, μ=0.1, =0.02, p=1, v1=0.01.v2=0.01 and the per capital birth and death rate has effect on 

the population of Susceptible and infectious class but no effect on the stability of the equilibria points. 

4. RESULTS 

    

  Figure 1: Susceptible Population (W) of E0                     Figure 2: Infectious Population (Z) of E0 

                        with Time for Various Values of Μ                                  with Time at Various Values of Μ  

      

Figure 3: Susceptible Population (A) of E1                   Figure 4: Infectious Population (F) of E1 

          with Time for Various                                   with Time at Various Values of Μ 

  

5. DISCUSSIONS OF RESULTS 

From the solution obtained numerically, we observed that increment in per capital birth and death rate (μ) 

populates the susceptible class and depopulates the infectious class and also we observed that it has no effect on the 

stability of the two equilibria points. 
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